Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Bildinformationen anzeigen
Bildinformationen anzeigen
Bildinformationen anzeigen
Organische und Makromolekulare Chemie
Prof. Dr. Dirk Kuckling

Publikationen 2022

Liste im Research Information System öffnen

Hydrogel-Based Biosensors

K. Völlmecke, R. Afroz, S. Bierbach, L.J. Brenker, S. Frücht, A. Glass, R. Giebelhaus, A. Hoppe, K. Kanemaru, M. Lazarek, L. Rabbe, L. Song, A. Velasco Suarez, S. Wu, M. Serpe, D. Kuckling, Gels (2022), 8(12), 768

<jats:p>There is an increasing interest in sensing applications for a variety of analytes in aqueous environments, as conventional methods do not work reliably under humid conditions or they require complex equipment with experienced operators. Hydrogel sensors are easy to fabricate, are incredibly sensitive, and have broad dynamic ranges. Experiments on their robustness, reliability, and reusability have indicated the possible long-term applications of these systems in a variety of fields, including disease diagnosis, detection of pharmaceuticals, and in environmental testing. It is possible to produce hydrogels, which, upon sensing a specific analyte, can adsorb it onto their 3D-structure and can therefore be used to remove them from a given environment. High specificity can be obtained by using molecularly imprinted polymers. Typical detection principles involve optical methods including fluorescence and chemiluminescence, and volume changes in colloidal photonic crystals, as well as electrochemical methods. Here, we explore the current research utilizing hydrogel-based sensors in three main areas: (1) biomedical applications, (2) for detecting and quantifying pharmaceuticals of interest, and (3) detecting and quantifying environmental contaminants in aqueous environments.</jats:p>

Hyphenation of ultra-high-performance liquid chromatography and ion mobility mass spectrometry for the analysis of sequence-defined oligomers with different functionalities and tacticity

M. Berg, A. Herberg, D. Kuckling, International Journal of Polymer Analysis and Characterization (2022), pp. 1-12

In recent years, sequence-defined oligomers (SDOs) gained increasing interest due to their perfectly controlled molecular structure, thus providing defined properties. In order to tune the properties, different functionalities need to be incorporated into the oligomers and the chain tacticity needs to be controlled. Beside the synthesis of SDOs, suitable methods need to be found to analyze the molecular structure. In this work, oligomers exhibiting an alternating or block-wise sequence of side chain functionalities were analyzed using a hyphenation of ultra-high-performance liquid chromatography and electrospray ionization mass spectrometry enhanced by ion mobility separation (IMS). Moieties in the side chains were varied according to polarity and bulkiness. Moreover, chain tacticity was varied. Drift times in the IMS cell and the corresponding collision cross section (CCS) values were shown to be individual parameters allowing the identification of SDOs, even in the case that SDO structures only differ in sequence or tacticity of side chain functionalities. Thus, a library of CCS values was obtained as reference used for the analysis of complex mixtures of SDOs.

Quinuclidine-Immobilized Porous Polymeric Microparticles as a Compelling Catalyst for the Baylis–Hillman Reaction

A. Kumar, D. Kuckling, L. Nebhani, ACS Applied Polymer Materials (2022), 4(12), pp. 8996-9005

Poly(quinuclidin-3-yl methacrylate-co-divinylbenzene) microparticles having porous as well as nonporous morphology and varying contents of quinuclidine functionality were synthesized by distillation–precipitation polymerization. Further, the synthesized microparticles were explored to catalyze the Baylis–Hillman reaction between 4-nitrobenzaldehyde and acrylonitrile. Porous and nonporous microparticles functionalized with a catalytic moiety with a loading of 70% (labeled as P70 and NP70) were employed to optimize reaction parameters such as water content, solvent, and temperature for the Baylis–Hillman reaction between 4-nitrobenzaldehyde and acrylonitrile. Using optimal conditions, the catalytic efficiency of porous and nonporous microparticles at different feed compositions was determined. Porous microparticles containing 70% of quinuclidine (P70) displayed 100% conversion within 16 h at 50 °C, while nonporous microparticles containing 70% of quinuclidine (NP70) displayed a relatively less catalytic conversion, which is attributed to their lower surface area. Furthermore, the catalytic activity of porous microparticles containing 70% of quinuclidine (P70) for the Baylis–Hillman reaction involving a variety of aryl aldehyde derivatives was determined, where the microparticles displayed impressive catalytic efficiency. In addition, the reusability of the microparticles functionalized with a catalytic moiety was evaluated for five cycles of catalytic reaction.

Branching analysis of β-cyclodextrin-based poly(<i>N</i>-isopropylacrylamide) star polymers using triple detection SEC

A. Herberg, D. Kuckling, International Journal of Polymer Analysis and Characterization (2022), pp. 1-19

For the first time, poly(N-isopropylacrylamide) (PNIPAAm) star polymers with a β-cyclodextrin core are characterized in detail by size-exclusion chromatography (SEC) with triple detection to experimentally verify the number of arms. A combination of a refractive index detector, multi-angle laser light scattering detector, and an online-viscosimeter was used for branching analysis. At first, the SEC system was calibrated and the detector setup was validated using linear polystyrene reference polymers. The applicability of the established triple detection SEC for branching analysis was shown by the analysis of two commercially available polystyrene star polymers. Due to the high molar masses of the star polymers, both the contraction ratio g and g′ could be determined independently, thus allowing the calculation of the viscosity shielding ratio ε. Finally, the branching analysis of the PNIPAAm star polymers could experimentally confirm the assumed arm number of up to 21 arms. Moreover, an increasingly compact molecular structure and the influence of the arm number on the viscosity shielding ratio could be shown.

Liste im Research Information System öffnen

Die Universität der Informationsgesellschaft