Research Concept
Chemical as well as physical processes are intrinsically associated with large length and time scales. Thus, an at least partially quantum mechanical description of such a many-body system is analytically only possible in very few exceptional cases. Instead, a statistical mechanical treatment with quantum mechanical methods that can be solved by modern massively parallel high-performance computers is required. The main task is therefore to devise and implement novel numerical techniques, which are as efficient as possible and yet, at the same time, qualitatively reproduce the correct chemistry and physics of the original system.
However, our purpose is not solely the development of new algorithms, but to solve scientifically relevant questions of chemistry, physics, material sciences and biophysics. In general our main interest is the investigation of complex systems in condensed phases (liquids, solids and supramolecular systems). In particular, our research group focuses on studying aqueous systems such as water interfaces, water in confined geometries, biological relevant reactions in aqueous solution and the heterogenous “on-water” catalysis. Additionally, we are also investigating sustainable systems and energy materials, specifically CIGS-based thin-film solar cells, polymer electrolyte fuel cells, lithium-sulfur batteries, novel hydrogen-storage materials, solid hydrogen, non-volatile phase-change materials and topological Weyl-semimetal-based catalysis.